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Abstract--Experimental observations of the settling process in a symmetrical, roof-shaped vessel 
show a deformation of the initially horizontal interface between the suspension and the clear fluid, if 
Re~/Gr is small and Re4/Gr is large. This phenomenon is the result of a particle stream moving 
upward with a relatively high velocity within a sub-boundary-layer between the bulk of the 
suspension and a clear liquid layer that is formed underneath the inclined walls of the vessel. This 
particle stream propagates into the clear liquid above the suspension, thus giving rise to the observed 
deformities with the shape of protruding "horns" and, as a consequence, to an oscillation of the 
interface. A possible reason for these effects could be the nonuniform particle size. This assumption is 
confirmed by a theoretical analysis, which proves the existence of the abovementioned sub-boundary 
layer for the special case of two different particle sizes. 

1. INTRODUCTION 

Several models have already been suggested in order to provide theoretical predictions of the 
sedimentation in vessels with inclined walls. Hill et al. (1977) found numerical solutions of 
the two-phase-flow equations for a very-dilute suspension of particles. The settling of a dilute 
suspension in a narrow channel between two parallel plates was studied experimentally and 
theoretically by Herbolzheimer & Acrivos (1981) and Leung & Probstein (1983). Settling 
in vessels whose aspect ratio is of order unity has been investigated by Acrivos & 
Herbolzheimer (1979) and Schneider (1982). A theory for the time-dependent settiing of a 
dilute suspension in a rotating conical channel was quite recently given by Amberg et al. 

(1984). Anestis & Schneider (1983) presented an application of the theory of kinematic 
waves to the centrifugation of suspensions. 

On using dimensional analysis the process of settling is described by two dimensionless 
groups: Re, a sedimentation Reynolds number, and Gr, a sedimentation Grashof number, 
which are defined as follows: 

Re ffi HU/vl, [11 

Gr = H3g%(p, - pl)Ip/@ [21 

where H is a characteristic height of the suspension, a0 the initial volume fraction of the solid 

phase, g the gravitational constant, a the density and v the kinematic viscosity. The subscript 

f refers to the clear fluid, and the subscript s to the solids. U is the settling velocity of an 
individual particle and given, for instance by Stokes' law 

u d'(p, - ..~.,.g, [3] 
18 pfPf 

where d is the diameter of the spheres. 
The analysis by Acrivos & Herbolzheimer (1979) requires both Re2/Gr and Re~/Gr to 

be small. These authors showed that the settling rate can be predicted from the well-known 
PNK formula due to Ponder (1925) and Nakamura & Kuroda (1937). This is incorrect, 
however, when centered waves appear within the suspension in the case of a certain range of 
ao (Schneider 1982). Apart from this fact, the deviations from the PNK formula reported in 
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the literature (Zahavi & Rubin 1975: Kinosita 1949) are probably due to 1]o~ instabilities 
(Herbolzheimer 1983) and nonuniform particle size in the suspension. 

In the present paper the latter case will be the subject of investigations in order to find an 
explanation for experimentally observed effects (Schaflinger 1985) such as "horns" and 
resuspending particles (figure 1). The analysis will be an extension of the theory by 
Schneider (1982), which is valid for small values of Re2/Gr and large values of Rea/Gr and 
leads to a two- or three-dimensional kinematic wave theory for the bulk flow. The analysis of 
Schneider allows a subsequent calculation of the clear liquid boundary layer, where in a first 
approximation the flow is inviscid and quasi-steady. Our calculations are mainly concerned 
with the influence of nonuniform particle size on the behaviour of the boundary layer 
underneath inclined walls. As shown later, the structure of the particle sub-boundary-layer 
depends on G r / R e  3. Only the limiting case of G r / R e  3 ~ 0 gives rise to an inviscid sublayer. 

Aside from the abovementioned investigations, Schneider et al. (1985) investigated the 
sediment composition due to settling of particles of different sizes. Smith (1966) studied the 
sedimentation of particles having a dispersion of sizes in vessels with vertical walls. He 
showed that the volume fraction of the slower particles in the upper region differs from its 
initial value and can be calculated from continuity of the flux across the interface. Davis et 

al. (1982) derived solutions for settling rates and concentration distributions within the 

Figure 1. Observation of the flow. 



INFLUENCE OF NONUNIFORM PARTICLE SIZE 785 

suspension during sedimentation of polydispersed suspensions in vessels having inclined 
walls but did not consider the influence on the boundary layer. Greenspan & Ungarish 
(1982) studied a hindered settling of particles of different sizes and determined volume 
fractions and distributions, as well as the composition of the sedimentary layer. 

2. B A S I C  E Q U A T I O N S  A N D  P R E V I O U S  R E S U L T S  

We introduce dimensionless variables by referring all volume flux densities and velocities 
to U, all lengths to H, the height of the vessel, and the time t to H / U  (figure 2). In section 3 
and the following sections U is replaced by UA. 

With the total volume flux density j = j / +  j,, the equations of continuity for the solid 
phase and the mixture are, respectively, 

a--t + '7j ,  = O, [41 

v i  = o. [5] 

In applications of batch sedimentation both Gr /Re  and Gr/Re 2 are usually very large. 
Therefore, the momentum equation of the mixture is reduced to 

vP-~ ot g' - 1 e. [6] 

where e is the unit vector in direction of gravity and P is a dimensionless pressure according 
to ~zP-  (~P - gP/)/gP.r. 

According to the arguments due to Schneider (1982), it may be shown by applying the 
curl operator to [6] that the partial particle concentration of each particle species in a 
polydispersed suspension has to be constant within the bulk in any horizontal plane at any 
instant of time. 

The momentum equation of the relative motion is reduced to a functional relation 

X 

Figure 2. Definition of variables. 
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between the drift-flux js/and the concentration a, that is formally written as 

j g = f ( a ) e .  [7] 

The funct ionf(a)  is to be determined from suspension mechanics or by experiments. Often 
an empirical correlation of the power-law form 

f (~ )  = a(1 - a )" , (n  = const.) [8] 

is used. According to Richardson & Zaki (1954), cf. also Wallis (1969, p. 178), the value n = 
4.7 provides good results for small particle Reynolds numbers. 

The existence of a particle-free boundary layer implies the following boundary condition 
for the normal component j ,  of the total volume flux j at the inclined wall (Schneider 

1982): 

a j,, + f ( a )  cos O = 0, [9] 

where 0 denotes the inclination angle between the horizontal x-axis and the wall (figure 2). 
In boundary-layer coordinates (~, 7) Schneider (1982) derived for a plane wall, a 

monodispersed suspension and a sedimentation process of type I (a = a0 = const, 
classification according to Wallis, 1969, pp. 191-194), a similarity solution of the inviscid 
boundary-layer flow of the clear liquid: 

2f(o~o) x~ ' [lO] 

X = "~ , ' : ,  

= (2 sin 0) t/2 f (ao)  ~1/2. [111 
tan 0 a0 

The stretched tangential velocity fi = uRe /Gr  and the normal velocity b = v are given by 
the partial derivatives of the stream function if: 

0F 
~ = 0-~' 

0F 
a~ 

[12] 

While the coordinate ~ = ~ remains unchanged, the coordinate ~ = r/• Grl/2/Re. Therefore, 
[11] for the interface between the suspension and the clear liquid is also stretched with 
Grl/2/Re. 

3. BOUNDARY LAYER FLOW OF A MIXTURE HAVING TWO SIZES OF PARTICLES 

For the theoretical analysis we assume a mixture with particles of size A and particles of 
size B that are by definition the larger ones. The deviations of the particles diameter of size B 
from size A should be small. The volume concentration a.4 of size A should be of the same 
order of magnitude as the volume fraction an of size B. The sedimentation process is of type I 
with a two-dimensional flow field in a roof-shaped, symmetrical vessel. All assumptions are 

in conformity with our experimental conditions (Schaflinger 1985) (figure 3). 
According to [9] we obtain for a suspension with two different particle sizes for the 

normal component j., of the total volume flux at the interface 1 between clear liquid and 
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Figure 3. Particle size distribution. 

f (~a)  j., ~--~ cos 0, [13a] 

where ~a is the volume concentration within the particle sub-layer. 
At the interface 2 between the layer of particles with size A and the suspension with the 

initial concentration So we obtain the corresponding result for the normal component Jn2 of 
the total flux 

f (s0)  Jn, - -  (1 + ~) cos 0, [13b] 
S 0  

where e is defined as 

u ~ - u ~  
, [141 UA 

In the following text the subscript 1 refers to the clear liquid layer and the interface 
between clear liquid and particles with size A. Subscript 2 refers to the particle sublayer and 
the interface between the sublayer and the suspension. 

Continuity of the total flux density across the interface 2 results in an equation for the 
unknown concentration ~A within the particle sublayer 

SA ] f(~A)SO O, [15] 
1 + ~ 1 ~A(1 -- SO)' f(SO)~A 
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which has to be evaluated numerically. For small values of aA there is an analytical solution 
found for the concentration ~ :  

~A [f(ao) l ~aA f(ao) 
azA + - -  (1 + e ) -  1 - = 0  [16] 

n [ ao n O~o(1-~o) 

where n is the exponent according to [8]. 

Equation [15] was also derived by Smith (1966) when he investigated the horizontal 
concentration jump appearing in sedimentation of particles with different sizes. 

It is an interesting fact following from [ 15] or [ 16] that for the limiting case ~ ---* 0: ~,~ = 

O(ao) and is independent on the initial concentration aA of the particle size A. Only when 
ao--" 0 and ~ > ao/f(ao) - 1 the concentration within the particle sublayer ~,~ = O(a,0. 
Figure 4 shows the initial concentration aA versus the concentration ~,~ within the sublayer 
for various values of ~ and with a constant total concentration a0 = 0.014 that was used in our 
experiments. 

From [ 13] we conclude that the variation of the total volume flux v2 normal to the wall 
within the particle sub-boundary-layer has to be of magnitude (j., - j.~). Thus, we define a 
parameter 

aA Of [171 

for the magnitude of this difference, p~. denotes the density of a suspension with particles A 
and a concentration of ~A. 

It can be shown that the particle sub-boundary-layer requires the following stretched 
variables: 

fi2 = ReGr-  L/2r-1/2~/,2, ) 

b2 = r-I(v2 - j.,), 

~2 = Grl/2 Re-lK-I/2(rl -- 6j), 

= f ,  

[ 1 8 ]  

with 61 = 6 • Re • Gr-~/2; 6 is given by [1 1], where ao has to be replaced by~A. 
Taking [13] into account, the equation of motion in tangential direction becomes 

Off2 lay -an sin 0 + Gr 1/2 Re -2 r -I/2 v~A 02fi2 
J" a?12 p~. ao vf a~l ' [19] 

where We = ao - aA- 
v~ A is the kinematic viscosity of the suspension containing particles A with a concentration 

~,4. v,~ is the kinematic viscosity of the suspension with the total concentration ao. It is related 
to the dynamic viscosity ~. of the suspension by v, = ~t./p, with p, = (1 - c0p£ + otps. 

The relevance of the viscous term of [ 19] depends on the magnitude of the thickness ratio 
of the particle sub-boundary-layer to the free shear layer t~2/6 / = O(Re2Gr-l/2rt/2). 
Additionally a complete analysis has to make sure that matching can be accomplished with 
u~, the velocity in the clear liquid layer, and u2, the velocity in the particle sub- 
boundary-layer as well as with u2, and u, the velocity within the bulk. The thickness of the 
free shear layer has to be t~f = O(Re-l) .  Hence it follows that the tangential velocity u/is as 
large as G r / R e  3. In this manner, the dimensionless group G r / R e  3 determines the relative 
thickness of the sublayer and its structure. 
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Figure 4. Volume fraction solids of size A within the bulk of the suspension (aA) versus the volume 
fraction of size A within the particle sub-boundary layer (~A). 

a) G r / R e  3---, 0: 

b) G r / R e  3 = O(1): 

c) G r / R e  3---- o~: 

An inviscid part of the particle sub-boundary layer exists, when 

From 52 = O(6~) it follows that the particle sub-boundary-layer is 
no longer inviscid 
The particle sub-boundary-layer lies entirely within the viscous 
free shear layer whereby 62/~f'')" 0 

Because the last case (c) excludes the experimentally observed effects (Schaflinger 1985), a 
more detailed analysis for this case will not be given. The other two cases (a, b) will be 
investigated in detail. 

3.1 Sub-boundary layer with Gr/Re 3 ~ 0 
3.1.1 The inviscid part of  the sub-boundary-layer. On the one hand, analysing this 

case requires both Gr /Re  3 and G r / R e  4 to be small. On the other hand, the assumption 
r~/2 Re 2 Gr-t/2 ___. ~ has to be satisfied and we derive the following restrictions for r 

1 >> K >> G r / R e  4. [20] 

The equation of motion, the continuity equation and the appropriate boundary conditions 
are given as follows: 

0fi2 Pl an tan 0, [21] 
Ofh m.f(ao) 

(962 = 0, [22] 

f i2=0  at ~2=32, [23a] 

b 2 = 0  at ~2=32, [23b] 

b2 f ( a o ) ~ , c o s 0  at ~2 = 0. [23c] 
otoP f 
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The boundary condition [23a] is only correct, when Gr ~/2 Re -~ t /2  --. ~, otherwise ~2 = 

O[j,(O] where j, is the tangential component of the total volume flux density and given by 
Schneider (1982). When a0 ~ 0 

1 
J' = sin 0 - ~ sin 20 - sin 0. [24] 

Defining a streamfunction ~2, analogous to [12], we obtain the solution of [21] + [23] 

~b2 = (2-ansin O) 1n~/2 ~12 ao ~s~ 2 tan 0 . p f  _ ~2f(ao)ps. cos O. [25] 
2f(ao) ~ C~op/ 

The thickness of a particle sub-boundary layer is found from [25] with [12] and [23a] 

~2 f(ao) (2 sin 0) In ~ ,  ~n .  [261 
(-~nao) In tan 0 PS 

The inviscid boundary layer flow cannot satisfy the condition of continuous shear stress 
at the interface 1 and at the interface 2, respectively. Hence free shear layers at both 
interfaces have to be introduced. 

3.1.2 The free shear layers at the interfaces 1 and 2. Matching the inviscid particle 
sublayer at the interface 1 with the clear liquid layer, as well as at the interface 2 with the 
bulk requires the following stretched variables: 

fir,., = Re3 Gr-l[u~,~ - ou2 + (o - 1)jr(O] 

br,., = Re (Gr ~)-'/Z(vr, ~ - L,,), 

~F,., = Re  [ r / -  (61 + 62) + tr6~], 

L , ,  = ~, 

[27] 

whereby at the interface 1: a = 1, and at the interface 2: tr ~ 0. 
In terms of the stretched variables according to [27], the momentum and continuity 

equations become: 

(afr,~ ~B sin 0 ) ( - S s p / l ' - "  (va~/1-* a2fr,~ ] 
ao j . , .  / \~oo 0-~/ sin 0 + 

~r,a > 0: Jn,, Ofr,~ va,.. 02fF,; 
0'~,,~ v s 0~-,~ ' 

[28] 

~F,.,¢ 0:o~ + (~-1)~ + ~ - o  [29] 

The matching conditions are: 

lim fr,~ = 0, 

l im 0 f F ' ~ = ( 1 -  2a) sinOps(PYl'-'-- o] 
[30a] 

[30b] 
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The total volume flux and the shear stress have to be continuous at the interfaces (1, 2). 
This yields the boundary conditions: 

lim v/.~ o/.=, = lim v~.~, ~,0 ~,,.,-o- a~,~} ~,,.,-o. .a~,~} 

lim fir,~ = l i m  fiF,~ 
~r t .~O-  ~e~a~O + 

lim b r , .  = l i m  b r , .  

The solution of [28] satisfying to the auxiliary conditions [30] and [31] is found to be 

~F,., < O: u r , ,  = ~F,., + - / " , . , / / ~ - ~  - -  - o" (1  - . 
~ . o  / L o \P~ l  J .... 

= - -  - o r  (1  - 2~r) ~,~ > 0: us,, ~ ~P~,~l 

) _ _  ltf  . "s nO 

O~..o \ v i i  J~.,~ " kv~,.o " 

[31] 

[321 

K = O(Gr /Re  4) = O(Re2/Gr) = O(Re-l) ,  

and the appropriate stretching transformations are 

= U, / 
% 

Re (v2 - J ,2 ) ,  

Re (n2 ~1), |  

J ~,. 

[341 

Taking [34] into account we derive the momentum equation for the particle sub- 
boundary layer from [ 19] 

• Ofiz - d B O Z s i n O + _ _  

with the condition for the interface B 

b5 = 0 at ~z = az. 

The equation of continuity [22] remains unchanged. 

va~ a252 

. :  o ~ '  
[351 

[36] 

[331 

3.2 Sub-boundary  layer  with G r / R e  3 = O(1) 
This case requires that the thickness of the particle sub-boundary layer 62 = O(6r). 

Hence the parameter 

The limiting case E ~ 0, especially when a monodispersed suspension is considered, leads 
to 52 = 0. Thus fir, ~ fiX, the tangentia_lvelocity within the free shear layer introduced by 
Schneider (1982)• However, the stretched variables distinguished by Schneider concerning 
Gr /Re  3 = O(1) or Gr /Re  3 ---* 0 are incorrect, because matching fails in the case Gr /Re  3 
0. The correct stretched variables are given by [27] with a = 0. 
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In stretched variables defined by [34], the equation of motion for the free shear layer at 
the interface 1, and the free shear layer at the interface 2 becomes 

j a~r ,  2 (v~]'-'a2fF,= 
, , ~  = ~s in0  + - -  [371 

whereby a = 1 for ~ = ~r,, and a = 0 for ~ = ~r,. 
The continuity equation [22] is used again with subscript F~ or F~ replacing subscript 2. 

The matching conditions are found to be 

lira OfF, sin0 [38a] 
~,,---® O~F, j., ' 

lim fr ,  = J , (0 ,  [38b] 

while the appropriate boundary conditions become 

~ ,z~6  - 

lim ~2 = l im." 

lira v2 = / i n ~ "  

[39] 

and 

lim 

lim fir, = lim+ u2 

lim br ,=  lim b:=P~e, 
~ .~0-  ~ 0  + 

[40] 

with 1~ = Re f (ao)p,~ K cos O/ao Of. 
Taking [24] into account, the solution of [35]-[40] in the case ao --* 0 is found to be 

tan 0 - sin 0 - A 
fF, = + C,(~2), 

0 c o s  
[41al 

fi2 tan 0 - A 
cos0 exp ( - ~ z c o s 0 )  - ~2A + Cl(~2), [41b] 

uF, = C2(~2) exp ( - ~ r ,  cos 0) + J,(~2), 

~2 = f ie  - C', (~2)~2, 

[41c] 

[41d] 

C'1 = A Re/(C1 + B), 

[41e] 

[41f] 

C2 tan 0 - ,4 
cos 0 + A exp (32 cos 0), [41g] 
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B = sin 0 
A 1 

cos 0 sin 0 - ~2 sin~ 0 '  
[4lh] 

A = an tan 0.  [ 4 1  i] 
o/o 

In the limiting case ~2 ---* 0 integrating [41 f] leads to the analytical solution 

C , = D + ( 2 R e ~ = A )  '/2, [421 

so that the equation for the interface B becomes 

~ = (C, + B) /A.  [ 4 3 ]  

Figure 5 shows the particle sub-boundary layer for two different values of K compared to 
the clear liquid layer• The initial concentration ao as well as the vessel's geometry are taken 
from our experiments (Schaflinger 1985). Under these conditions settling in clear water 
yields G r / R e  3 = 0.07 and G r / R e  4 = 0.05. The measured particle size distribution (figure 3) 
justifies the assumption that aA is within the range of 0.006 and K ~ 0.1. In this case an 
inviscid particle sub-boundary layer appears with a relatively large velocity upwards• The 
theoretical prediction [26] complies well with the experimental observations (figure 5). 
When r = 0.05 the particle sublayer is ~overned by the solution according to [41], and is no 
longer inviscid (dashed line in figure 5). . 

4. C O N C L U S I O N S  

A theory by Schneider (1982), which is valid for small values of Re2/Gr and large values 
of Re4/Gr, deals with batch sedimentation of a monodispersed suspension in a symmetrical, 
roof-shaped vessel. Experiments show some puzzling effects that are not predicted by this 
theory, e.g. a particle sub-boundary layer between the clear liquid layer at the inclined wall 
and the bulk of the suspension. Particles are moving upward within that sublayer with a 
relatively high velocity. This particle stream propagates into the clear liquid above the 
suspension, where it is observed as protruding "horn" deforming the initially horizontal 
interface. Subsequently this effect gives rise to an oscillation of the interface. In order to 
explain these effects the abovementioned theory is enhanced by taking into account 

R e  = 7 0 5 7  
G r  = 2 . 4 x I 0  I° 
Cto =.014 % = . 0 0 8  

\ \  
, i l  z N vf:i::~,z:,.. / t . .  

- -  I ~ : ' :  t!.~/t~ oJ . j _ ~  # +,. . ~ ,  r..:l/..~: .EL 

.2 : °:;i .::~::::. 

.z - -  .1~- , ; ;~ : .~ . ,~ . ' . .~  

• . ~ . ; , . . ~ : ~ :  ::-::~.;.: 

- 0  .I .2 .3 .4 .5 

Figure 5. Boundary layer for two sizes of particles and comparison with the experiment. 
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nonuniform particle sizes. In conformity with our experimental conditions (Schaflinger 
1985), small deviations of one particle size A from the other size B are taken as a basis for a 
theoretical analysis. Thereby it is shown that the particle sub-boundary layer is influenced by 
the deviations of particle size, as well as by the ratio of the partial volume fractions. In the 
case of two different particle sizes within the suspension the concentration of solids within 
the particle sub-boundary layer is of the same magnitude as the total bulk-concentration if 
the deviations of the nominal size are small. 

The structure of the particle sub-boundary layer depends on the magnitude of Gr /Re  3. 
When Gr /Re  3 --, 0 the sublayer is mainly inviscid. To satisfy the condition of continuous 
shear stress at both interfaces, free shear layers have to be introduced. 

The results show that in the case of nonuniform particle size within a suspension there 
exists an upstreaming particle sub-boundary layer. This particle stream explains the 
observed phenomena like protruding "horns," resuspending of particles and a subsequent 
oscillation of the interface suspension-purified liquid. The calculated particle sub-boundary 
layer thickness is in fair agreement with the experimental data. 

In the case of large deviations of one particle size from the other, and a very small 
volumetric concentration of one size compared with the total concentration, the observed 
effects cannot be explained. A particle sub-boundary layer does exist, but the volume 
fraction of solids within this layer is too small in comparison with the experiments. For more 
details cf. the Appendix. 

± 
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A P P E N D I X :  S U B - B O U N D A R Y  L A Y E R  IN T H E  C A S E  O F  L A R G E  D E V I A T I O N S  O F  O N E  
P A R T I C L E  S I Z E  F R O M  T H E  O T H E R  

Consider the case of large deviations of one particle size from the other. The volumetric 
concentration of one particle size is assumed to be very small in comparison with the total 
volume fraction of solids (a = aA + aB). Subscript A refers to particles with the smaller size. 
Both particle Reynolds numbers are assumed to be small, in order that Stoke's law [3] 
remains valid. Thus, the structure of the flow field, both the bulk and the boundary layer, is 
given by the results for a monodispersed suspension. A linear superposition of Schneider's 
solution for the streamfunction ~bf for the liquid as a result of [4]-[9], as well as the boundary 
conditions given by the vessel's geometry; and the settling velocity of a single nonuniform 
particle within the whole swarm of solids with concentration ao yields the following particle 
stream function for the deviating species: 

~s. xf(°t°)[(1 .4- ~) I-k~2 2'' ~ ] = • - -  + - -  k [ A 1 ]  
ao z (1 - ao) " 

zm the position of the kinematic shock separating the sediment from the suspension, is given 
by 

f(oto) 
zm = 1 , [A2] 

O/m --  Ot 0 

where otto denotes the concentration of the sediment which is at rest. The parameter k is 
defined to be + 1 if the main species are smaller than the deviating ones. If  the main particles 
are greater than the deviating particles, k = - 1. 

Equation [A 1 ] shows that the particle paths are located between straight lines parallel to 
the vertical axis (k ~ 1, e --- oo) and the liquid streamlines in the suspension (k - - 1, e ---, oo). 
The case e ---- 0 leads to the solution for the particle streamlines calculated by Schneider 
(1982). 

In the case k - - 1  the deviating particles penetrate the clear liquid boundary layer. 
Following the same ideas as mentioned above, we obtain by a linear superposition the 
equation for the particle paths within the layer 2 

~ " -  (1 + e)[ (2 sin 0)I/2 ~l/~ ~ ~12a°tanO'] -~c°sO-~sinO" 2f  (Oto) [A3I 

If the main particles are greater than the deviating ones, the penetration depth within the 
boundary layer is given by the location where the component of the particle velocity normal 
to the wall vanishes. This leads to the equation for the interface between the liquid that 
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remains particle-free and the liquid layer with penetrated solids: 

(2 s i n  0)|/2 
~ = (l + ~)-1 ~1/2. [A4] 

tan 0 

For small values of ~ _< ao/f(ao) - 1 (k = - 1 )  an evaluation of [A3], [A4] for an 
upstreaming particle sub-boundary layer fails, because the particle concentration within the 
layer is greater than the volume fraction of the deviating solids within the bulk (figure 4) and 
must be determined from the total flux continuity across the interface 2. Thereby the 
sub-boundary layer is influenced by the particles, too. 


